UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data
نویسندگان
چکیده
منابع مشابه
UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data.
Biclustering algorithms, which aim to provide an effective and efficient way to analyze gene expression data by finding a group of genes with trend-preserving expression patterns under certain conditions, have been widely developed since Morgan et al. pioneered a work about partitioning a data matrix into submatrices with approximately constant values. However, the identification of general tre...
متن کاملbiclustering algorithm for embryonic tumor gene expression dataset: las algorithm
an important step in considering of gene expression data is obtained groups of genes that have similarity patterns. biclustering methods was recently introduced for discovering subsets of genes that have coherent values across a subset of conditions. the las algorithm relies on a heuristic randomized search to find biclusters. in this paper, we introduce biclustering las algorithm and then appl...
متن کاملSeed-Based Biclustering of Gene Expression Data
BACKGROUND Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular proces...
متن کاملAn Improved Biclustering Algorithm for Gene Expression Data
Cheng-Church (CC) biclustering algorithm is the popular algorithm for the gene expression data mining at present. Only find one biclustering can be found at one time and the biclustering that overlap each other can hardly be found when using this algorithm. This article puts forward a modified algorithm for the gene expression data mining that uses the middle biclustering result to conduct the ...
متن کاملBiclustering of gene expression data
Biclustering is an important problem that arises in diverse applications, including the analysis of gene expression and drug interaction data. A large number of clustering approaches have been proposed for gene expression data obtained from microarray experiments. However, the results from the application of standard clustering methods to genes are limited. This limitation is imposed by the exi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep23466